
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  21 (1986)  2 8 3 0 - 2 8 3 4  

Mechanical behaviour and formulation of 
stress-strain relation for non-linear viscoelastic 
cellulose nitrate under cyclic Ioadings 
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The cyclic deformations under various repeated stresses are quantitatively investigated using 
non-linear viscoelastic cellulose nitrate heated to 60 ~ C. The non-elastic strain or creep-plastic 
strain is remarkably influenced by the repeated stress and the stress rate. The cyclic defor- 
mations corresponding to the repeated stress less than a certain stress level attain the 
saturated state called the "shake down" after some cycles. The stress-strain relations of the 
non-linear viscoelastic media in the loading and unloading processes are deduced from the 
invariant theory using an hypothesis of creep potential. The non-linear viscoelastic obser- 
vations obtained on the cellulose nitrate at 60~ under cyclic Ioadings are found to fit the 
deduced relations for the loading and unloading processes independent of the repeated stress 
and the stress rate. 

1. In troduc t ion  
The mechanical behaviour of polymers has been widely 
investigated because of the large advances in the 
utilization of polymers. A number of previous papers 
are concerned with the deformation behaviour in 
loading of polymers at initial cycles and not the unload- 
ing process [1-5]. The deformation behaviour in the 
unloading process of non-linear viscoelastic polymer 
is remarkably different from that in the loading 
process and is known to be more complicated than 
metals [6, 7]. Moreover, the deformation behaviour of 
non-linear viscoelastic polymers subjected to cyclic 
loadings deviate from that at the initial cycle with 
increases in the number of  cycles, and is also affected 
by stress rate. The difference of deformation behaviour 
due to the number of cycles becomes more remarkable 
for larger values of repeated stress level. 

In this paper, the deformation behaviour in the 
loading and unloading processes under cyclic loadings 
are quantitatively investigated using non-linear visco- 
elastic cellulose nitrate heated at 60~ under various 
repeated stresses and various stress rates. Moreover, 
the stress-strain relations of the non-linear viscoelastic 
media in the loading and unloading processes are 
deduced from the invariant theory with an hypothesis 
of creep potential considering the distinctive features 
of the deformation behaviour. The deduced relations 
are compared with the experimental results in the 
loading and unloading processes under the cyclic 
loadings. The deduced relations in the loading and 
unloading processes give fairly good agreement with 
the actual observations under the cyclic loadings 
independent of stress rate and repeated stress level. 

2. Formula t ion  of  s t ress -s t ra in  
re lat ions 

2.1. Loading process 
When the stress increases slowly, the strain rate of an 
element of  a polymer is considered to consist of the 
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creep strain rate and the instantaneous elastic-plastic 
strain rate. When the time hardening theory is adopted 
for convenience of analysis, the creep strain rate is 
proposed by using the second invariant of the devi- 
atoric stress tensor as follows [8] 

(~ij)c = B( t  + s) ~ exp (bJ~/2)(~J2/~?0-ij) (1) 

where eij are the components of strain tensor, the dot 
represents differentiation with respect to time. B, e and 
b are material constants, t and s denote current time 
and material constant time introduced by the author 
[8]. J2 = SijSiJ 2 is the second invariant of the deviatoric 
stress tensor [8, 9]. aij and Sij = aij - l o i i  I~ij are com- 
ponents of stress tensor and deviatoric stress tensor of 
aij. Hence OJ2/O0-ij in Equation 1 becomes Sij. 

The instantaneous elaStic plastic strain rate may be 
given as [10] 

1 2n + 1 (J2"~ n at2 
(~ij)0 = ~ ~-~ij "t- 4~---G-- \k-~J ~ Sij (2) 

which is Ramberg- Osgood's relation of  rate type, and 
is good approximation of the non-linear stress-strain 
relation. G, n and k in Equation 2 are material con- 
stants. Therefore, from the above mentioned two 
parts, the component of  strain rate is expressed as 
follows 

/~ij = (~ij)c "t- (~ij)0 (3)  

With the components of principal stress a, ,  a 2 and 0-3, 
J2 is expressed as follows [8, 9] 

J2 = 1[(0-, _ a2)2 + (0-2 - 0-3) 2 + (0-3 -- r 21 (4) 

In the present tests, the axial tensile stress a~ is applied 
to the uniaxial specimen (i.e. 0-2 = 0-3 = O) 

�9 12 = a~/3, J2 = 20-,6,/3 (5) 

is obtained from Equation 4. By substituting Equation 
5 into Equation 3, the axial strain rate is expressed as 

0022-2461/86 $03.00 + .12 �9 1986 Chapman and Hall Ltd. 



follows 

6-~ (2n + 1 ) ( ~ ) "  O" I 

~'  = 3-G + 3G al 

lb ,-1 + 2 B ( t  + s)  ~ exp L(3)l/2j a, (6) 

When it is necessary to calculate the total strain e,, the 
following procedure may be adopted [8]. Time is sub- 
divided into small invervals, 0 ~ t~, t~ ~ t 2 , . . . ,  

t m ,  ~ t ~ ,  . . . , t, in which the magnitude ~ may be 
considered to be approximately constant. For example, 
e , ( t m )  at arbitrary time t,, in the period tin_ , ~ tm is 
approximated as 

e, ( tm)  = ~ , ( t m _ , )  Aft_ ~ , ( t m _ , ) ( t , ,  - -  t i n _ , )  (7) 

2.2. U n l o a d i n g  p r o c e s s  
An unloading co-ordinate whose axes are directed in 
the opposite directions to those in the preceding loading 
co-ordinate is considered as a new loading process 
beginning at the instant t* of  the beginning of unload- 
ing as shown in Fig. 1. The measures corresponding to 
the unloading co-ordinate are distinguished with the 
bar over symbols. In Fig. l, the strain e, in the loading 
process is divided into the elastic strain e e and the 
creep-plastic strain e~p by the broken line. In the non- 
linear viscoelastic deformation, the strain in the unload- 
ing process is proposed to consist of  the three major 
strains, namely, an elastic strain ~E, a creep recovery 
strain gu in the unloading process, and an additional 
creep strain eL as shown in Fig. 1 [7]. The additional 
creep deformation corresponding to gc continues to 
appear in the early stage of  unloading process for the 
operating load even in the unloading process. That  is, 
it may be considered that the additional creep strain 
which could not sufficiently appear for the stress state 
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Figure 1 Rela t ionsh ips  be tween stress r and  s t ra in  e, in load ing  and  

un load ing  processes ob t a ined  f rom exper iments  for 6~ = 0.5 and  

2 M P a m i n  -I  a t  60~ 

of the loading process continues to appear for the 
operating stress in the early stage of unloading 
process. As the amount of  creep strain which has 
appeared in the loading process has been counted 
already in the loading process, it is only necessary to 
take into account such a strain from the beginning of  
unloading to the considered instant during unloading. 
Therefore, H is used instead of B in Equation 6 as 
shown in Equation 8. 

In the unloading process which is considered as a 
new loading beginning at the origin of  the unloading 
co-ordinate, the plastic deformation may be neglected 
and the components of  strain rate may be expressed in 
the following form by means of the same manner as in 
the loading process [7]. 

- 3F + 2D(i  + s)~ exp [g f f , / (3 ) ' /218~  

2 H ( t  + s)  ~ exp [ba l / (3 ) ' /2]~r l  (8) 

where F, D, fl and g are material constants in the 
unloading process. In Equation 8, time, stress and 
strain are expressed as i = t - t*, 6, (t') = ~, (t*) - 
~,(t) and ~,(i) = e,(t*) - e,(t). The total strain ~, is 
calculated from Equation 8 by the same manner as in 
the loading process. Time in the unloading process is 
subdivided into small intervals, 0 ~ fi, t, ~ ~z . . . . .  
t-,._, ~ t-,. . . . .  , i. ~,(i,.) at arbitary time im in the 
period i m_, ~ i m is approximated as 

gl(im) = ~,(/'m-,) + ~,(/-~ ,)( i ra- i~_,) (9) 

2.3. Determination of values of material 
constants 

The material constants in Equations 6 and 8 at the first 
cycle can be approximately determined from the exper- 
iments of  creep test (al = constant) and proportional 
loading (a, = constant) by using uniaxial specimens 
subjected to axial tension. The material constants in 
Equations 6 and 8 at the second cycle and after the 
second cycle are empirically determined from the 
experimental results by trial and error method. We 
show the procedure for determining the material con- 
stants in the unloading process is almost same as in the 
loading process. 

In the case of  creep test ~ = c(const), or ~l = 0 

8, = ~ B ( t  + s )  ~ exp [ b ( c / ( 3 ) v 2 ] ( c )  (10) 

is obtained from Equation 6, and taking logarithms of  
both sides, the following form is obtained 

2 log(ez/c) = log(xB) + ~ l o g ( t  + s) 

+ 0 . 4 3 4 b e / ( 3 )  '/2 (11) 

As the values of g, and t are known from the exper- 
imental results, the values of  B, c~, s and b are approxi- 
mately determined by the experiments for more than 
two different values of  c. 

For  the case of  proportional loading (namely, 
uniform rate of stress increase with time) ~ = d (con- 
stant) or a, = d t ,  the following equation is obtained 
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from Equation 6 

~l = 2B(  t + s) ~ exp [b(a,/(3)l /2](at)  + 

2 n +  1 [  a, ]2, 
+ L(3)f/ kJ d (12) 

Unknown values in Equation 12 are G, k and n. As the 
quantity 

~1 = 6h/(3G) 

is predominant while the value of of is small, we can 
determine G in the early state of  loading process. By 
denoting the known terms in Equation 12 with A( t )  as 

dl ] n ( t  + s) ~ exp [b(al/(3)l/2]a a A( t )  = et 3G 

Equation 12 becomes 

A ( t ) -  2 n + l /  a 1 ~2n 
\(3)'/2k) d (13) 

Taking logarithms of  both sides, the above relation 
becomes 

logA(t)  = (2n) loga~ + log(2n + 1)d 

- log 3G[(3)l/2k] 2" (14) 

As the values of  G, A( t )  and a~ are known already, the 
values of  k and n can be found from the experiment in 
which al increases linearly with time. The material 
constants in the unloading process can be determined 
by the almost same procedure as in the loading 
process. 

3. Experiments in cyclic Ioadings 
The uniaxial specimens were made of initially isotropic 
cellulose nitrate, 6mm thick. On a surface of each 
specimen, a square gauge mark was cut in a region Of 
sufficiently uniform state. The experimental apparatus 
is same as in the previous papers [7, 8] and consists of 
three major systems, namely: a heated oil vessel, load- 
ing and unloading equipment with a load cell, and 
instruments to record the load and deformation. 
Detailed description of  the shape of the specimen and 
of the apparatus is given in reference [10]. 

The tests of cyclic loadings were performed under 
the axial tensile stress af at 60 ~ C. The stress increases 
linearly with time in the loading process and decreases 
with time in the unloading process as the proportional 
loading. Each load was applied so as to obtain the 
constant rates of change of dl = 0.5, 1 and 2 MPa 
min-f,  and the repeated stresses (maximum stress of 
cyclic loading) was adopted as the conditions of 
o- m = 15, 14, 12 and 10MPa for each value of6f .  The 
experiments were performed during 10 cycles, or 
ef = 0.08 for various values of  am and 3-1. 

The gauge mark in each instant during the cyclic 
loadings was photographed, and the relative change of  
the distance of  the gauge mark was precisely measured 
to within 0.005 mm by using a magnifying projector 
[7, 8]. The accuracy of  strain thus obtained is within 
about 2 x l 0  -4. The strain was calculated in the 
natural strain system el = In (1 + el), where e~ is the 
conventional engineering strain [7, 8]. 

4. Experimental  resul ts  and d i s c u s s i o n  
The solid curves in Figs 2 and 3 show the stress-strain 
relation obtained from the experiments of cyclic load- 
ings for the repeated stress am = 15 MPa with dl = 0.5 
and 2 MPa rain t, respectively, as examples. The solid 
curves in Figs 4 and 5 show those for the repeated 
stress cr,, = 10MPa with al = 0.5 and 2 M P a m i n  -f, 
as examples. Each curve in these figures is plotted 
using the average values of three test results. 

In Figs 2 to 5, the strain el at the first cycle is divided 
into the elastic and creep-plastic (non-elastic) strains 
by the thin chain line. From Figs 2 and 3, it is confirmed 
that the creep-plastic strains are substantially influ- 
enced by the values of  the stress rate fff and they 
become larger for smaller value of af in the loading 
and unloading processes. The reason is due to the 
effect of viscosity of material. 

The modes of stress-strain relation in the loading 
process are fairly affected by the number of cycles N, 
and those in the unloading process are not so influenced 
as shown in these figures. The cyclic deformations at 
the tenth cycle in Fig. 4 and the sixth cycle in Fig. 5 
may be considered to attain to the saturated state, and 
this effect is called the "shake down" due to work- 
hardening of material [11]. In Figs 4 and 5, the cyclic 
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Figure 2 Stress-strain relations for cyclic 
deformation of  repeated stress a,, = 
15MPa with 6-1 = 0 .5MPamin  -~. ( - o - )  
experiment, ~ - )  calculation. 
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Figure 3 Stress s t ra in  re la t ions  for cyclic de fo rma t ion  of  repeated  
stress am = 1 5 M P a  wi th  6~ = 2 M P a m i n  1. 
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deformation for ~1 = 2MPamin-1  attains to the 
saturated state at smaller cycle than that for 61 = 
0 .5MPamin  1. It is worth noting that the effect of 
shake down under the cyclic loadings appears at smaller 
cycle for larger value of  stress rate ffj. 

The values of material constants in Equations 6 
and 8 were determined according to the procedure 
mentioned in Section 2.3 from the experimental results 
shown in Fig. 2 and from the creep test results as 
shown in the previous paper [8]. Fig. 6 shows the 
relations between the values of material constants and 
the number of  cycles N in the loading process. The 
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Figure 4 Stress s t ra in  re la t ions  for cyclic de fo rma t ion  o f  repeated  
stress % = 10 M P a  wi th  6-~ = 0.5 M P a m i n - l .  
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Figure 5 Stress s t ra in  re la t ions  for cyclic de fo rma t ion  of  repeated  
stress ~ ,  = 1 0 M P a  wi th  5t = 2 M P a m i n  ~. 

material constants except for H in the unloading 
process are not almost affected by the cycle N, and the 
constant Hi s  shown in Fig. 6. The value ofs  is 1.0 min 
in the loading and unloading process. The values 
of material constant in the unloading process are 
as F = 680MPa, D = 5.7 • 10 7MPa mmin (~+1), 
/3 = - 0.65, g = 0.65 MPa 1. As shown in Figs 2 to 5, 
the broken curves calculated from Equations 7 and 9 
using the corresponding material constants for each 
cycle fairly agree well with the corresponding exper- 
imental results shown by the solid curves for each 
value of stress rate ~ and for each value of  repeated 
stress am. The above mentioned calculation were 
performed for several time increments: 1 min for 
6-1 = 0.5 and 1MPamin  -~, 0.5min for ~ = 2 MPa  
min-I. In these calculations, the co-ordinate of  load- 
ing process for the second cycle has its origin at the 
final point of unloading process of  the first cycle. The 
time for the second cycle is adopted as t = 0 at the 
origin of  the loading process of  the second cycle. In the 
same manner, the origin for every cycle in the loading 
process is considered as the final point of  unloading 
process for the preceding process. 

In Fig. 6, the value of k corresponding to yield 
stress becomes large with increase of  cycles N, and 
hence the plastic strain becomes small with increase of 
cycles N. The values of b and B also become small with 
increase of  cycles N. 

5. C o n c l u d i n g  r e m a r k s  
The main results are: 

1. The creep-plastic strain is remarkably influenced 
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Figure 6 Relationships between number of cycles N and various 
material constants. 

by the effect of viscosity of material due to the stress 
rate. The creep-plastic strain decreases with increase 
of  the stress rate. 

2. The creep-plastic strain in the loading process is 
fairly affected by the number of cycles, and that in the 
unloading process is not so influenced as in the loading 
process. 

3. The modes of  stress-strain relation obtained 
from experiments are fairly affected by the value of 

repeated stress. The cyclic deformations correspond- 
ing for the repeated stress less than a certain stress 
level attain to the saturated state which is called as the 
shake down after some cycles. Moreover, this shake 
down attains at smaller cycle for larger value of  stress 
rate. 

4. The material constants in the loading process are 
affected by the number of cycles and may be approxi- 
mately considered as a linear function of the number 
of cycles. However, the many material constants in the 
unloading process are not so affected by the number of 
cycles and may be approximately considered to be 
kept unchanged. 

5. The additional creep strain ~L continues to appear 
in every early stage of  the unloading process of  cyclic 
loadings of  non-linear viscoelastic deformation. 

6. The proposed stress-strain relations based on the 
invariant theory give good agreement with the actual 
observations in the loading and unloading processes 
for non-linear viscoelastic polymer under cyclic load- 
ings independent of  the stress rate and repeated stress. 

7. Although the features of non-linear viscoelastic 
behaviour mentioned above are obtained for the 
cellulose nitrate, it may be considred that the similar 
phenomena may appear in the non-linear viscoelastic 
behaviour for other polymers. 
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